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The exact analytic aftereffect functions for the Kerr-effect relaxation of an assembly of symmetric top
molecules having induced dipole moments only are calculated from the rotational diffusion equation~Smolu-
chowski equation!. The solution is obtained in the case where the molecules are acted on by a strong dc field
Ec , superimposed on which is a weak probe fieldE1(t) suddenly switched off at timet50. By calculating the
Laplace transforms of these aftereffect functions, two normalized autocorrelation functions are established,
thus allowing one to express the corresponding birefringence ac responses by using linear response theory in
the manner derived by Coffeyet al. @Phys. Rev. E49, 1869 ~1994!# for the longitudinal susceptibility of
single-domain ferromagnetic particles. The connection between aftereffect and ac responses holds insofar as
only one matrix relaxation function is needed for describing the induced dipole Kerr effect. Then, exact
expressions for the correlation time and the effective relaxation time are derived in terms of Kummer functions
and compared. It is shown that as soon as the dc field parametergc exceeds 3, the birefringence decay process
is no longer dominated by the first nonvanishing eigenvalue of the differential matrix set~solution of the
Smoluchowski equation! unlike dielectric relaxation, but by the second one. Moreover, dispersion plots and
Cole-Cole diagrams as well as phase angles for the second harmonic component are presented for various
values ofgc in order to see how they deviate from the Debye-like spectra.@S1063-651X~96!12709-4#

PACS number~s!: 41.20.2q, 05.40.1j, 78.20.Fm, 78.20.Jq

I. INTRODUCTION

The exact solution for the rise transient of the birefrin-
gence and the corresponding relaxation times for an assem-
bly of nonpolar but anisotropically polarizable molecules
was recently given by De´jardin, Blaise, and Coffey@1#. This
was accomplished starting from the Smoluchowski equation,
in which inertia is completely ignored, which governs the
time behavior of the orientational probability density func-
tionW~q,w,t!. By expanding this function as a series of Leg-
endre polynomials, a set of differential-recurrence relations
is obtained, restricted only to the even polynomials, which
are of interest for the induced dipole Kerr effect. This set of
differential-recurrence relations may be solved exactly in
terms of continued fractions, from which the rise transient of
the birefringence may be calculated by taking the Laplace
transform of the birefringence function, i.e., the ensemble
average of the second Legendre polynomial^P2~cosq!&(t).
Having removed the singularity ats50 ~zero-frequency
limit !, we also expressed the relaxation time defined as the
area delimited by the curve of the rise transient and the time
axis as a sum of products of Kummer functions and its first
derivatives@1#.

In this paper, we shall show how it is possible to obtain

exactly the analytic aftereffect solution for an assembly of
noninteracting symmetric top molecules comprised of pure
induced dipole moments only, thus allowing us to calculate
the exact correlation time of the induced dipole Kerr effect.
This amounts to studying the decay process of the birefrin-
gence following the sudden removal of a small electric field
E1(t) applied in a direction parallel to a strong dc bias elec-
tric field Ec , by which the molecules have been influenced
for a long time. We shall also demonstrate how the complex
alternating birefringence responseDn(v)5Dn8(v)
2 iDn9(v) may be calculated from the Laplace transform of
the aftereffect function using linear response theory, thus al-
lowing us to show the frequency dependence of the birefrin-
gence from the dispersion and absorption spectraDn8~v! and
Dn9~v!. In this way, linear response theory has been success-
fully employed in the exact calculation of the complex di-
electric or magnetic susceptibilities@2,3# for ac fields applied
parallel and perpendicular to a dc bias field. These physical
quantities require a knowledge of the first autocorrelation
functionC1(t) appealing to the first Legendre polynomial. In
our approach to the decay process of Kerr effect relaxation, a
similar method may be applied by using the second autocor-
relation functionC2(t), namely,

C2~ t !5
^@P2~cosq!#~0!@P2~cosq!#~ t !& uE1502^@P2~cosq!#~0!& uE150

2

^@P2~cosq!#2~0!& uE1502^@P2~cosu!#~0!& uE150
2 , ~1!
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where the angular brackets represent ensemble averages of
the second Legendre polynomialP2~cosq! evaluated in the
absence ofE1(t).

It should be noted that the connection existing between
the transient response and the ac response holds for pure
induced dipole moments only, unlike pure field-off moments,
since these latter correspond, strictly speaking, to a nonlinear
Kerr effect response. This aspect will be developed in Sec.
II. Then we shall verify that the exact solutions which we
obtained are in excellent agreement with those obtained by
expressing the set of differential recurrence relations in ma-
trix form Ẋ(t)5MX (t), and calculating the eigenvalues and
corresponding amplitudes of the first modes of the birefrin-
gence decay. Next we present results yielded by the effective
eigenvalue method and compare the effective relaxation time
with the correlation time for various values of the dc electric
field expressed in terms of the dimensionless parametergc
defined as

gc5
a i2a'

2kT
Ec
25

Da

2kT
Ec
2, ~2!

whereai anda' represent the principal electric polarizabil-
ities parallel and perpendicular to the symmetry axis of the
molecule, respectively.

II. PERTURBATION SOLUTION
OF THE SMOLUCHOWSKI EQUATION

IN THE PRESENCE OF INDUCED
DIPOLE MOMENTS

We assume that molecules are nonelectrically interacting,
which means that, in particular, the dipole-dipole coupling
effect is not taken into account, so that we may consider the
motion of only one molecule, the others following on the
average the same behavior. The orientational potential en-
ergy arising from the anisotropy of the polarizability of the
molecule acted on by the electric fieldE is

V52 1
2E•a•E, ~3!

wherea is the second-rank electric polarizability tensor.
If the geometric axes of the molecule coincide with those

of the polarizability tensor, we have

V~q,t !52 1
2DaE2cos2q2 1

2a'E
2, ~4!

where q is the angle the symmetry axis of the molecule
makes with the field direction. Since the potential energy
depends on the polar angleq only, we can ignore the azi-
muthal dependence on the anglew in the orientational prob-
ability density function so that its time evolution written in
terms of operators is~Smoluchowski equation! @4#

] f ~u,t !

]t
5@Â0~u!12g~ t !Âg~u!# f ~u,t !, ~5!

where

f ~u,t !5E
0

2p

W~q,w,t !dw, u5cosq, ~5a!

Â0~u!5D
]

]u F ~12u2!
]

]uG5DDu ~5b!

is an operator not perturbed by the electric field,D is the
rotary diffusion constant,Du is the Laplacian operator with
respect to the variableu,

Âg~u!5DF ~3u221!2u~12u2!
]

]uG , ~5c!

is an operator perturbed by the electric field, andg(t) is the
parameter measuring the ratio of the orientational energy
arising from the electrical polarizabilities to the thermal en-
ergy, namely,

g~ t !5
Da

2kT
E2~ t !. ~5d!

We shall solve Eq.~5! by using a perturbation method as
previously detailed in Refs.@4, 5#. To accomplish this, we
rewrite this equation as

] f ~u,t !

]t
5@Â0~u!1e2E2~ t !Âg~u!# f ~u,t !, ~6!

wheree25Da/kT may be regarded as a small perturbation
parameter.

In the absence of electric field~unperturbed state!, the
corresponding solution of Eq.~6!, called the conditional-
probability-density function by Morita@5#, satisfies the fol-
lowing partial differential equation:

]h~u,u8,t !

]t
5Â0~u!h~u,u8,t !. ~6a!

SinceÂ0(u) is a Laplacian operator,h(u,u8,t) may be ex-
panded in a series of Legendre polynomials

h~u,u8,t !5(
n

exp@2n~n11!Dt#Pn~u!Pn~u8!, ~6b!

with the following initial condition~closure relation!:

h~u,u8,0!5(
n

Pn~u!Pn~u8!5d~u2u8!, ~6c!

whered~u2u8! is the Dirac delta function.
The general solution forf (u,t) is then

f ~u,t !5E h~u,u8,t ! f ~u,0!du8

1e2E E
0

t

h~u,u8,t2t8!

3 Âg~u8!E2~ t8! f ~u8,t8!du8dt8. ~7!

Now, by expandingf (u,t) in a series of even powers ofe,
we find that
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f ~u,t !5 f ~u,0!1(
j51

`

e2 j f g,2j~u,t !.

If we restrict ourselves to the linear response up to the sec-
ond order in the electric field strength, we have~j51!

f ~u,t !5 f ~u,0!1e2f g,2~u,t !, ~8!

where the subscriptsg and 2 stand for the dependence on the
induced dipole moment and the order of the electric field,
respectively, and

f g,2~u,t !5E
0

t

hfg~ t2t8!E2~ t8!dt8. ~8a!

In Eq. ~8a!, h represents a row matrix, the elements of which
are the Legendre polynomials of even degree,

h5@P0 ,P2 ,P4 ,...,P2 j ,...#, ~8b!

while fg is a column matrix with thej th term given by

f g
~2 j !5exp@22 j ~2 j11!Dt#E P2 j~u!Âg~u! f ~u,0!du.

~8c!

Let us consider an electric stimulus of the form
E(t)5Ec1E0 cos(vt), that is a strong dc field, superim-
posed on which is a weak ac field applied in the same direc-
tion. We have

f g,2~u,t !5h~Ec
21 1

2E0
2!E

0

t

fg~ t2t8!dt8

1 1
2hE0

2E
0

t

fg~ t2t8!cos~2vt8!dt8

12hE0EcE
0

t

fg~ t2t8!cos~vt8!dt8, ~9!

from which we see that the induced dipole Kerr effect result-
ing from such an electric field consists of three components
characterized by the same matrix relaxation functionfg(t). In
the stationary regime corresponding to the physical situation
where all the transients disappear, Eq.~9! becomes

lim
t→`

f g,2~u,t !5h~Ec
21 1

2E0
2!E

0

`

fg~ t !dt

1 1
2hE0

2H F E
0

`

fg~ t8!cos~2vt8!dt8Gcos~2vt !

1F E
0

`

fg~ t8!sin~2vt8!dt8Gsin~2vt !J
12hE0EcH F E

0

`

fg~ t8!cos~vt8!dt8Gcos~vt !

1F E
0

`

fg~ t8!sin~vt8!dtGsin~vt !J . ~10!

In Eq. ~10!, we find a time- and frequency-independent part
and two distinct time-dependent contributions varying at the
circular frequency of the alternating field and its second har-
monic. We also note that the leading term of this equation
proportional toE c

2 andE0
2 corresponds to a steady compo-

nent. Regarding the harmonic components, the terms in 2v
arise from the ac field only, while the terms inv result from
the conjugate action of both ac and dc biasing fields~nonlin-
ear effect!. On using the definition of the Fourier-Laplace
transforms in the time domain, the Kerr effect response may
therefore be expressed as follows:

f 2~ t !5 lim
t→`

e2f g,2~u,t !5Dn~0!

1(
j51

2

@Dnj8~v!cos~ jvt !1Dnj9~v!sin~ jvt !#,

~11!

where Dn~0! is the steady component, andDnj8(v) and
Dnj9(v) are the real and imaginary parts of the complex
electric birefringence functions such that

Dn~0!5e2h~Ec
21 1

2E0
2!Fg~0!, ~12a!

Dn2~v!5Dn28~v!2 iDn29~v!5 1
2e

2hE0
2Fg~2iv!,

~12b!

Dn1~v!5Dn18~v!2 iDn19~v!52e2hE0EcFg~ iv!,
~12c!

andFg(s) is the one-sided Fourier transform matrix offg(t),

Fg~s!5E
0

`

fg~ t !exp~2st!dt, ~12d!

the symbolic variables being equal to 2iv or iv.

III. CALCULATION OF THE BIREFRINGENCE
ac RESPONSE USING THE LAPLACE TRANSFORM

OF THE CORRESPONDING
AFTEREFFECT FUNCTIONS

In order to proceed, we consider the rotational Brownian
motion of a symmetric top molecule subjected to the total
external electric fieldEc1E1(t), whereE1(t) is a small con-
stant field. For the calculation of the birefringence decay, we
assume thatE1(t) is suddenly switched off at timet50. So,
returning to Eq.~5!, and seeking its solution as a series of
Legendre polynomials in the form

f ~u,t !5 (
n50

`

an~ t !Pn~u!, ~13!

we obtain the following set of differential-recurrence rela-
tions:
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tD
k~2k11!

ḟ 2k~ t !1F12
2gc

~4k21!~4k13!G f 2k~ t !
5

2gc~2k21!

~4k21!~4k11!
f 2k22~ t !

2
2gc~2k12!

~4k11!~4k13!
f 2k12~ t !, k51,2, . . . ,

~14a!

which is identical to Eq.~4! of Ref. @1# or Eq.~7! of Ref. @6#,
but where

f 2k~ t !5^P2k~u!&~ t !2^P2k~u!&~ t ! uE150 ,

~14b!

f 0~ t !50,

instead of f 2k(t)5^P2k(u)&(t), and tD is the usual Debye
relaxation time related to the birefringence relaxation timet
by the relation

tD53t5
1

2D
. ~14c!

This set constitutes a three-term recurrence relation, so that
we can find its solution in the form of scalar continued frac-
tions as previously derived@1,6#.

Since we are interested in the decay process of the bire-
fringence, only a knowledge off 2(t) is needed; that is,

f 2~ t !5E
21

11

@P2~u!2^P2~u!& uE150# f ~u,t !du.

Taking the Laplace transform of Eq.~14a!, we have@see Eq.
~28! of Ref. @6##

R2k~s!F stD
k~2k11!

112
2gc

~4k21!~4k13!

1
2gc~2k12!

~4k11!~4k13!
R2k12~s!G5

tD
k~2k11!

f 2k~0!

F2k22~s!

1
2gc~2k21!

16k221
, ~15!

where

R2k~s!5
F2k~s!

F2k22~s!
, ~15a!

F2k~s!5E
0

`

f 2k~ t !exp~2st!dt. ~15b!

The initial conditions are given by the functionsf 2k~0!,
which may be determined as follows:

f 2k~0!5

E
21

11

exp@~gc1g11gc1!u
2#P2k~u!du

E
21

11

exp@~gc1g11gc1!u
2#du

2^P2k~u!& uE150 , ~16!

where

gc5
Da

2kT
Ec
2, g15

Da

2kT
E1
2, gc15

Da

kT
EcE1 ,

g1 ,gc1!gc .

Insofar asg1 andgc1 are considered small perturbations, we
can use the linear approximation forf 2k~0!, which yields

f 2k~0!5~g11gc1!@^u
2P2k& uE1502^u2& uE150^P2k& uE150#

5 f 2k
~2!~0!1 f 2k

~1!~0!, ~17!

where the superscripts~2! and ~1! stand for the terms pro-
portional tog1 andgc1, respectively. We have retained these
notations because, as we shall presently see,f 2k

~2!~0! will
allow us to calculate the second harmonic component of the
birefringence, andf 2k

~1!~0! the first one. On using the recur-
sion relation of the Legendre polynomials

~4k11!uP2k5~2k11!P2k1112kP2k21 ,

and evaluatinĝ P2k&E150 and ^u2&E150 as detailed in Ref.
@1#, Eq. ~17! is

f 2k~0!5~g11gc1!F ~2k11!~2k12!

~4k11!~4k13!

gc
k11

2M ~ 1
2 ,

3
2 ,gc!

G~k1 3
2 !

G~2k1 7
2 !

M ~k1 3
2 ,2k1 7

2 ,gc!

1
2k~2k21!

~4k21!~4k11!

gc
k21

2M ~ 1
2 ,

3
2 ,gc!

G~k2 1
2 !

G~2k2 1
2 !

M ~k2 1
2 ,2k2 1

2 ,gc!G1~g11gc1!
gc
k

2M ~ 1
2 ,

3
2 ,gc!

G~k1 1
2 !

G~2k1 3
2 !

3M ~k1 1
2 ,2k1 3

2 ,gc!F ~2k11!2

~4k11!~4k13!
1

4k2

~4k21!~4k11!
2

M ~ 3
2 ,

5
2 ,gc!

3M ~ 1
2 ,

3
2 ,gc!

G . ~18!
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where we have used theG and Kummer~or confluent hyper-
geometric! functions defined as@7#

G~z11!5zG~z!,

M ~a,b,z!511(
j51

`
~a! j
~b! j

zj

j !
,

~a! j5
G~a1 j !

G~a!
,

~b! j5
G~b1 j !

G~b!
~Pochhammer symbols!.

The next step consists in calculating the Laplace transform of
the birefringence aftereffect function, that isF2(s). In order
to accomplish this, we adopt the method proposed by Cresser
et al. @8# and Coffey@9#, in which R2k(s) is split into two
parts such that

R2k~s!5S2k~s!1q2k~s!/F2k22~s!, ~19!

whereS2k(s) is the solution of the homogeneous equation
~14a! @f 2k~0!50# @see Eq.~7! of Ref. @1# or Eq. ~30! of Ref.
@6##.

Hence Eq.~15! may be reexpressed in terms ofq2k(s) and
S2k(s) functions

F stD
k~2k11!

112
2gc

~4k21!~4k13!Gq2k~s!

1
2gc~2k12!

~4k11!~4k13!
@q2k12~s!1q2k~s!S2k12~s!#

5
tDf 2k~0!

k~2k11!
, ~20!

from which

q2k~s!5a2kFtDgc f 2k~0!2b2kq2k12~s!GS2k~s!, ~21!

where

a2k5
16k221

2k~4k221!
, b2k5

2k~2k11!~2k12!

~4k11!~4k13!
. ~22!

From Eqs.~15b! and ~19!, we have

F2k~s!2F2k22~s!S2k~s!5q2k~s!, ~23!

so that

F2k~s!5HF2k22~s!1a2kFtDgc f 2k~0!2b2kq2k12G JS2k~s!.

~24!

For k51, one obtains@F0(s)50#

F2~s!5a2FtDgc f 2~0!2b2q4~s!GS2~s!. ~25!

The continued fractionS2(s) depends onS4(s), which in
turn depends onS6(s), and so on. After some algebra~see
details in Appendix A!, we finally arrive at the following
result:

F2~s!

f 2~0!
5

t

st112
2gc
21

1
8gc
35

S4~s!

3F11
3

5 (
n51

`

~21!n
f 2n12~0!

f 2~0!

n15/4

~n13/2!~n11/2!

3
G~n11!G~1/2!

G~n11/2! )
k51

n

S2k12~s!G . ~26!

This equation is the exact formulation of the Laplace trans-
form of the decay functionf 2(t). It has the same form as the
dielectric result of Coffeyet al. @6# ~with odd functions! ap-
plied to single-domain ferromagnetic particles. At this stage,
one can note the equivalence of the present problem~even
functions! with that solved in our previous paper@1# or that
in Ref. @6#. However, the initial conditions are completely
different here@see Eqs.~16!, ~17!, and~18!#, since they can
be split into two parts. On the other hand, and correlatively,
the aftereffect response resulting from the application of two
fields brings into play twoF2 functions. Indeed, on setting
s52iv or s5 iv, Eq.~26! allows one to define the one-sided
Fourier transforms of the normalized birefringence autocor-
relation functions as

C2~2!~2iv!5
F2

~2!~2iv!

f 2
~2!~0!

, ~27a!

C2~1!~ iv!5
F2

~1!~ iv!

f 2
~1!~0!

. ~27b!

We may therefore calculate the complex birefringence func-
tions which, using linear response theory are as follows.

For the second harmonic component~2v!,

Dn2~v!

Dn28~0!
5122ivE

0

` f 2
~2!~ t !

f 2
~2!~0!

exp~22ivt !dt

5122iv
F2

~2!~2iv!

f 2
~2!~0!

5122ivC2~2!~2iv!.

~28!

On recalling that

L@ ḟ 2k~ t !#52 f 2k~0!1sF2k~s!, ~29!

whereL denotes ‘‘the Laplace transform of,’’ Eq.~28! be-
comes

Dn2~v!

Dn28~0!
52L2iv@ f 2

~2!~ t !#/ f 2
~2!~0!5X2~v!2 iY2~v!,

~30!
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which shows that in the linear approximation the rate of
decay of the induced dipole Kerr effect is the negative of its
rate of growth~birefringence arising from a continuously ap-
plied ac field!.

For the first harmonic component~v!,

Dn1~v!

Dn18~0!
512 ivE

0

` f 2
~1!~ t !

f 2
~1!~0!

exp~2 ivt !dt

512 ivC2~1!~ iv!

52Liv@ f 2
~1!~ t !#/ f 2

~1!~0!

5X1~v!2 iY1~v!. ~31!

In Eqs.~30! and~31!, Xj ~v! andYj ~v! ~j51,2! represent the
real and imaginary parts of the normalized birefringence
functions. Their evolution as a function of the circular fre-
quency lead to the well-known dispersion spectra. It is also
interesting to plot the variations ofYj as a function ofXj ,
which yield Cole-Cole-like diagrams. The dispersive nature
of the medium is again manifested by the phase angleuj
existing between the applied field and the Kerr effect re-
sponse, namely,

u j~v!5tan21
Yj~v!

Xj~v!
. ~32!

By inspection of Eq.~26!, we note that all these quantities
are strongly dependent on the parametergc . We shall exam-
ine this aspect in Sec. IV.

IV. NUMERICAL ANALYSIS OF THE NORMALIZED
AMPLITUDES FOR THE BIREFRINGENCE FUNCTIONS

We have just established exact formulas for the induced
dipole Kerr effect arising from the coupling between a small
ac field, and a strong dc biasing field. Because the alternating
field is very small, we have been able to define a linear
relaxation behavior with respect to this field. With a view
toward obtaining expressions for the harmonic components
of the birefringence which may be easy to apply to experi-
ments, we shall now seek to reduce Eqs.~28! and~31! to the
first order approximation. This means that we shall take into
account only the first term of the sum in Eq.~26!, and sub-
sequently we shall neglectS2k12(s) for k greater than 1: that
is, S6(s), S8(s), etc.

Hence, for the second harmonic components we have

X2~v!2 iY2~v!

512
2ivt

2ivt112
2gc
21

1
8gc
35

2gc/21

3

5
ivt1122gc/77

3F 12
18

25

f 4
~2!~0!

f 2
~2!~0!

2gc/21

3

5
ivt1122gc/77

G , ~33!

where@from Eq. ~18!#

f 4
~2!~0!5

g1

M ~ 1
2 ,

3
2 ,gc!

F 80gc
3

297 297
M ~ 7

2 ,
15
2 ,gc!

1
4gc

2

315 S 39772 M ~ 3
2 ,

5
2 ,gc!

3M ~ 1
2 ,

3
2 ,gc!

D
3M ~ 5

2 ,
11
2 ,gc!1

8gc
315

M ~ 3
2 ,

7
2 ,gc!G , ~34a!

f 2
~2!~0!5

g1

M ~ 1
2 ,

3
2 ,gc!

F16gc23675
M ~ 5

2 ,
11
2 ,gc!

1
2gc
15 S 11212 M ~ 3

2 ,
5
2 ,gc!

3M ~ 1
2 ,

3
2 ,gc!

DM ~ 3
2 ,

7
2 ,gc!

1
2

15
M ~ 1

2 ,
3
2 ,gc!G . ~34b!

On setting

a5122gc/77, b53vt/5, c5122gc/21, d52vt,
~34c!

A5
16

735
gc
2, H5

12

175

f 4
~2!~0!

f 2
~2!~0!

gc ,

Eq. ~33! becomes

X2~v!2 iY2~v!512
id@~a2H !1 ib#

~a1 ib !~c1 id !1A
, ~35!

which, separating the real and imaginary parts, yields

X2~v!5
~ac1A!~ac2bd1A!1~bc1dH!~ad1bc!

~ac2bd1A!21~ad1bc!2
,

~36a!

FIG. 1. Dispersion and absorption plots of the second harmonic
component of the birefringence.R and I stand for the real and
imaginary parts of the normalized complex birefringence. The sub-
scripts 1–4 denote variousgc values. 1,gc53; 2, gc56: 3, gc57;
and 4,gc59.
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Y2~v!5
~ac1A!~ad1bc!2~bc1dH!~ac2bd1A!

~ac2bd1A!21~ad1bc!2
.

~36b!

In the particular case whengc50, we have

X2~v!5
1

114v2t2
5

1

11~v/3D !2
, ~37a!

Y2~v!5
2vt

114v2t2
5

~v/3D !

11~v/3D !2
, ~37b!

in agreement with previous results@10#.
The dispersion spectra represented byX2~v! and Y2~v!

are illustrated in Fig. 1 forgc53, 6, 7, and 9, and in Fig. 2
for gc518. We note a Debye-like behavior as far asgc is less
than 6. Beyond this value, the real partsX2~v! are character-
ized by an overshoot@X2~v!.1#, while the maxima of the
imaginary partsY2~v! are shifted to the right of the fre-
quency scale for increasinggc values. Moreover, forgc.7,
Y2~v! takes negative values at low frequencies. A similar
trend is observed forgc518, accompanied by negative val-
ues ofX2~v! in the high-frequency region which is charac-
teristic of resonant behavior.

Cole-Cole plots are shown in Figs. 3 and 4. Up togc53,
one may consider that quasisemicircles are obtained, the per-
fect semicircle corresponding togc50. As gc becomes

greater than 3, these diagrams are larger and larger, de-
formed on the right by taking the shape of conchoids of
circles. All these curves start fromX251 andY250 when
v50, and tend tangentially to theOY2 axis asv→`. gc
values greater than 7 are interesting from an experimental
point of view. In this case, indeed, one can solveY2~v!50,
and find a solution which differs from zero. One has

vt5S 253 ~ac1A!~H2a!

10H13c D 1/2, ~38!

which allows one to extract the birefringence relaxation time
t having determined by experiment the circular frequency
for which Y250. We have also plotted variations of the
phase angleu2 as a function ofv, as shown in Figs. 5 and 6,
for various gc values. The general tendency of all these
curves is that the asymptotic limit is alwaysp/2. As long as
gc does not exceed about 7, one remarks that the slope of
theseS-shaped curves becomes steeper and steeper for in-
creasinggc values. Then, forgc59, for example,u2~v! starts
from zero, and takes negative values before passing again
through zero and attainingp/2. The high value ofgc518
leads to similar conclusions, with, however, a small differ-
ence in the midfrequency domain whereu2~v! slightly ex-
ceedsp/2 before reaching this limiting value.

The same considerations may be used to find the first
harmonic components from the corresponding aftereffect
function appearing in Eq.~31!. By restricting this equation to
the first order approximation, one obtains

FIG. 2. Same as Fig. 1, forgc518.

FIG. 3. Cole-Cole plots of the second harmonic component of
the birefringence. The numbers above the plots are for variousgc
values.

FIG. 4. Same as Fig. 3, forgc518.

FIG. 5. Plots of the phase angles vs log10~v/2p! for the second
harmonic component of the birefringence. The numbers indicated
by arrows are for variousgc values.
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X1~v!2 iY1~v!

512
ivt

ivt112
2gc
21

1
8gc
35

2gc/21

3

10
ivt1122gc/77

3F 12
18

25

f 4
~1!~0!

f 2
~1!~0!

2gc/21

3

10
ivt1122gc/77

G , ~39!

wheref 4
~1!~0! and f 2

~1!~0! are given by Eqs.~34a! and~34b!, in
which g1 is replaced bygc1.

We have verified that the dispersion plotsX1~v! and
Y1~v! behave in the same manner as those described by the
second harmonic. We simply observe a frequency shift to the
right.

V. EXACT EXPRESSIONS FOR THE CORRELATION
AND EFFECTIVE RELAXATION TIMES

By definition, the correlation time is the area under the
curve of the normalized autocorrelation functionC2(t): that
is,

T5 lim
s→0

E
0

`

C2~ t !exp~2st!dt5 lim
s→0
C2~s!5C2~0!5

F2~0!

f 2~0!
.

~40!

Since this time corresponds to the limit of zero frequency in
the Laplace transform ofC2(t), we obviously have

C2~2!~0!5C2~1!~0!5C2~0!, ~41a!

as appears in Eq.~26!, where

f 2n12
~2! ~0!

f 2
~2!~0!

5
f 2n12

~1! ~0!

f 2
~1!~0!

, ~41b!

so that there is only one expression forT.
From Eq.~26!, in which we sets50, one obtains~reduced

relaxation time!

T

t
5T85

1

12
2gc
21

1
8gc
35

S4~0!

3F11 3
5 (
n51

`

~21!n
f 2n12~0!

f 2~0!

n15/4

~n13/2!~n11/2!

3
G~n11!G~1/2!

G~n11/2! )
k51

n

S2k12~0!G , ~42!

where

S4~0!5
2gc
21

M ~ 5
2 ,

11
2 ,gc!

M ~ 3
2 ,

7
2 ,gc!

.

On evaluating the product in Eq.~42! ~see Appendix B!, T8
becomes equal to

T85
M ~ 3

2 ,
7
2 ,gc!

S 11
2gc
15 DM ~ 3

2 ,
7
2 ,gc!2

8gc
35

M ~ 3
2 ,

9
2 ,gc!

3F119(
n51

`

~21!n
f 2n12~0!

f 2~0!

3
G~1/4!G~3/4!G~n11!

~n13/2!G~n15/4!G~n17/4!

3
gc
n

22n15

M @~2n13!/2,2n17/2,gc#

M ~ 3
2 ,

7
2 ,gc!

G . ~43!

This is an exact expression for the correlation time equal to 1
for gc50. Its evolution as a function ofgc is illustrated in
Fig. 7. In order to ensure correct convergence of the sum in
Eq. ~43!, we have verified that 24 iterations~n524! were
sufficient in the range 0,gc,50. The Kerr effect correlation
time passes through a maximum situated aboutgc51.4
~which is interesting experimentally! before decaying mono-
tonically to zero for increasinggc values. This behavior re-
sembles that observed in the rise transient process@1# with,

FIG. 6. Same as Fig. 5, forgc518.

FIG. 7. Comparison of the exact correlation timeT8 ~curvea!
with the effective relaxation timeTeff8 ~curveb! as a function of the
electrical anisotropy parametergc . ~T8 andTeff8 are reduced times!.
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however, smaller numerical values falling off more and more
in proportion togc asgc increases.

We shall now see how equivalent results may be obtained
by using matrix methods. This is accomplished by arranging
the set of differential recurrence relations@Eq. ~14a!# in the
form

ḟ2k~ t !52
1

6t
Mf 2k~ t !, k51,2,..., ~44!

wheref2k and f2k are column matrices withj th terms given
by f 2 j (t) and d f2 j (t)/dt, respectively, andM is an n3n
matrix defined by

M51
6S 12

3gc
21 D 48gc

35
0 0 0 •••

2
40gc
21

20S 12
2gc
77 D 80gc

33
0 0 •••

0 2
420gc
143

42S 12
2gc
165D 224gc

65
0 •••

0 0 2
336gc
85

72S 12
2gc
285D 0 •••

••• ••• ••• ••• ••• •••

2 ~45!

The formal solution of Eq.~44! is

f2k~ t !5f2k~0!exp~M 8t !, ~46!

where

M 852
1

6t
M ,

and f2k~0! is the column vector of initial conditions@Eq.
~18!#.

Hence the relaxation modes of the decay Kerr function
may be written as follows:

f 2
~2!~ t !5g1(

j
A2 jexp~2l2 j t ! , ~47a!

f 2
~1!~ t !5gc1(

j
A2 jexp~2l2 j t !, ~47b!

whereA2 j denotes the amplitudes of the first components of
the successive eigenvectors associated with the eigenvalues
l2 j .

From Eqs.~40! and ~47!, we have

F2
~2!~s!5g1(

j
A2 j~s1l2 j !

21, ~48a!

F2
~1!~s!5gc1(

j
A2 j~s1l2 j !

21, ~48b!

so that

T5
( jA2 jl2 j

21

( jA2 j
. ~49!

The amplitudes and eigenvalues of the first four modes are
presented in Table I for various values of the parametergc
up togc520. Since the eigenvalues are evaluated in the form
l2 j /6t, the reduced relaxation timeT8 is effectively given by

T85
T

t
56(

j

A2 jl2 j
21

A2 j
. ~50!

It should be noted that all the amplitudes are positive, unlike
what was observed for the rise transient response. Moreover,
as far asgc remains small enough~about 4, say!, one can
consider that the reciprocal of the lowest eigenvaluel2 pro-
vides a rough description of the correlation time. As soon as
gc becomes greater than 4, it is no longer the first mode
which dominates the response, but the second one. This ex-
plains the differences observed between our dispersion plots
and Cole-Cole diagrams when compared to the Debye spec-
tra @Eqs. ~37!#. This means that the decay of the induced
dipole Kerr effect characterized by the functionf 2(t) cannot,
in general, be represented by a single exponential, save for
small or very high values of the parametergc . By using a
30330 matrix, excellent agreement was obtained in com-
parison with the continued fraction methods for allgc values.

It is now interesting to consider the solution rendered by
the effective eigenvalue method. In this approach, it is as-
sumed that the pure induced dipole mechanism may be ap-
proximated by a single exponential term characterized by an
effective relaxation timeTeff , such that

f 2
~2!~ t !5g1exp~2lefft !, ~51a!

f 2
~1!~ t !5gc1exp~2lefft !, ~51b!

whereleff5Teff
21 is the effective eigenvalue.

From Eqs.~47!,
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leff52
ḟ 2~0!

f 2~0!
5

( jA2 jl2 j

( jA2 j
, ~52!

and the reduced effective relaxation time is

Teff8 5
Teff
t

56
( jA2 j

( jA2 jl2 j
. ~53!

Another expression forTeff may be found starting from the
set of differential recurrence relations. This provides a very
simple analytic formula forTeff . Settingk51 in Eq. ~14a!,
and noting thatf 0(t)50, one has

ḟ 2~ t !52
1

6t F6S 12
2gc
21 D f 2~ t !1

48gc
35

f 4~ t !G , ~54!

so that

ḟ 2~ t !52
1

6t F6S 12
2gc
21 D f 2~ t !1

48gc
35

f 4~ t !G ~55!

and

Teff8 5
1

12
2gc
21

1
8gc
35

f 4~0!

f 2~0!

. ~56!

The variations ofTeff8 as a function ofgc are plotted in Fig. 7.
We find again a maximum at aboutgc51. The curve is
slightly situated under that of the correlation time up to
gc515, and beyond this value both curves have practically
the same behavior~similar asymptotic limit!.
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APPENDIX A

We seek the exact expression for the Laplace transform of
the aftereffect birefringence function,F2(s). In order to pro-
ceed, we recall Eq.~25!,

F2~s!5a2FtDgc f 2~0!2b2q4~s!GS2~s!,

which, using Eq.~22! for k52,

q4~s!5a4FtDgc f 4~0!2b4q6~s!GS4~s!, ~A1!

yields

TABLE I. Eigenvalues in the forml2 j /6t of the first four modes of the decay of the birefringence as a value of the parametergc and
corresponding amplitudesA2 j , j51,2,3,... .T8 is the reduced correlation time given by Eq.~5!.

gc l2 l4 l6 l8 A2 A4 A6 A8 T8

0.2 5.89 19.90 41.90 71.90 0.138 2.93E-09 1.49E-09 3.21E-14 1.017 98
0.4 5.80 19.81 41.82 71.82 0.142 0.000 121 2.45E-08 2.11E-12 1.033 64
0.6 5.72 19.74 41.74 71.74 0.146 0.000 278 1.27E-07 2.46E-11 1.046 78
0.8 5.66 19.67 41.68 71.68 0.149 0.000 505 4.11E-07 1.41E-10 1.057 17
1 5.61 19.62 41.62 71.62 0.151 0.000 803 1.02E-06 5.47E-10 1.064 65
1.2 5.58 19.57 41.58 71.58 0.152 0.001 17 2.14E-06 1.65E-09 1.069 10
1.4 5.56 19.54 41.54 71.54 0.152 0.001 61 4.00E-06 4.21E-09 1.070 42
1.6 5.60 19.52 41.52 71.52 0.152 0.002 11 6.85E-06 9.42E-09 1.068 57
1.8 5.57 19.51 41.51 71.51 0.150 0.002 68 1.10E-05 1.91E-08 1.063 56
2 5.60 19.51 41.50 71.50 0.148 0.003 30 1.67E-05 3.58E-08 1.055 46
3 5.93 19.69 41.65 71.64 0.124 0.006 95 7.86E-05 3.78E-07 0.973 36
4 6.61 20.15 42.07 72.04 0.0925 0.0107 0.000 212 1.81E-06 0.842 85
5 7.61 20.91 42.75 72.70 0.0624 0.0135 0.000 415 5.50E-06 0.695 85
6 8.90 21.96 43.71 73.62 0.0393 0.0151 0.000 654 1.24E-05 0.557 36
7 10.45 23.34 44.95 74.81 0.0235 0.0155 0.000 890 2.29E-05 0.440 79
8 12.20 25.05 46.47 76.27 0.0135 0.0151 0.001 08 3.64E-05 0.349 89
9 14.11 27.12 48.29 78.01 0.007 40 0.0140 0.001 21 5.17E-05 0.282 39
10 16.13 29.56 50.42 80.03 0.003 89 0.0126 0.001 27 6.70E-05 0.233 46
11 18.20 32.38 52.87 82.34 0.001 95 0.0111 0.001 25 8.09E-05 0.198 04
12 20.28 35.56 55.66 84.94 0.000 935 0.009 63 0.001 16 9.20E-05 0.172 00
13 22.37 39.07 58.80 87.85 0.000 431 0.008 36 0.001 02 9.95E-05 0.152 34
14 24.45 42.86 62.33 91.08 0.000 193 0.007 30 0.000 848 0.000 103 0.137 02
15 26.51 46.86 66.25 94.62 8.38E-05 0.006 43 0.000 667 0.000 103 0.124 75
16 28.57 51.00 70.60 98.51 3.58E-05 0.005 72 0.000 494 9.99E-05 0.114 65
17 30.61 55.22 75.37 102.74 1.52E-05 0.005 13 0.000 345 9.41E-05 0.106 16
18 32.64 59.46 80.56 107.35 6.24E-06 0.004 64 0.000 227 8.65E-05 0.098 91
19 34.67 63.71 86.12 112.35 2.57E-06 0.004 20 0.000 142 7.79E-05 0.092 63
20 36.70 67.92 92.02 117.77 1.05E-06 0.003 82 8.49E-05 6.88E-05 0.087 12
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F2~s!5a2
tD
gc

f 2~0!S2~s!2a2b2Fa4 tD
gc

f 4~0!

2a4b4q6~s!GS2~s!S4~s!

5
tD
gc

@a2f 2~0!S2~s!2a2b2a4f 4~0!S2~s!S4~s!#

1a2b2a4b4q6~s!S2~s!S4~s!. ~A2!

The complementary functionq6(s) may in turn be expressed
as

q6~s!5a6FtDgc f 6~0!2b6q8~s!GS6~s!, ~A3!

so that

F2~s!5
tD
gc

@a2f 2~0!S2~s!2a2b2a4f 4~0!S2~s!S4~s!

1a2b2a4b4f 6~0!S2~s!S4~s!S6~s!2•••#. ~A4!

In this form, one can see that Eq.~A4! is an alternating series
which can be written as a sum of products of continued frac-
tions,

F2~s!5a2
tD
gc

S2~s!F f 2~0!1 (
n50

`

~21!n11f 2n14~0!

3)
k50

n

a2k14b2k12S2k14~s!G . ~A5!

The product of the coefficientsa2k14b2k12 can be easily
calculated. One has

)
k50

n

a2k14b2k125)
k50

n
~2k12!~4k19!

~2k15!~4k15!

5
3

5

n19/4

~n11/2!~n13/2!~n15/2!

3
G~n12!G~1/2!

G~n11/2!
. ~A6!

Hence Eq.~A5! becomes

F2~s!

f 2~0!
5a2

tD
gc

S2~s!F11 (
n50

`

~21!n11
f 2n14~0!

f 2~0!

3)
k50

n
~2k12!~4k19!

~2k15!~4k15!
S2k14~s!G

5a2
tD
gc

S2~s!F11
3

5 (
n51

`

~21!n
f 2n12~0!

f 2~0!

3
n15/4

~n11/2!~n13/2!

G~n11!G~1/2!

G~n11/2! )
k51

n

S2k12~s!G ,
~A7!

which is Eq. ~26!, after having noted from Eqs.~20! and
~22a! that

a2
tD
gc

5
15t

2gc
,

S2~s!5
2gc
15

1

st112
2gc
21

1
8gc
35

S4~s!

.

APPENDIX B

The exact expression for the correlation time given by Eq.
~42! may be reduced to Eq.~43! if one explicitly expresses
the product of continued fractionsS2k12~0!. One has

)
k51

n

S2k12~0!5S4~0!S6~0!S8~0!...S2n12~0!

5S 2gc 3

739D S 2gc 5

11313D S 2gc 7

15317D
3•••3S 2gc 2n11

~4n13!~4n15! D
3
M @~2n13!/2,2n17/2,gc#

M ~ 3
2 ,

7
2 ,gc!

. ~B1!

By using the definition and the properties ofG functions, the
following products may therefore be calculated:

335373•••3~2n21!~2n11!52n11
G~n13/2!

G~1/2!
,

~B2!

73113153•••3~4n21!~4n13!

5 1
3 ~4n13!4n

G~n13/4!

G~3/4!
, ~B3!

93133173•••3~4n11!~4n15!

5 1
5 ~4n11!~4n15!4n

G~n11/4!

G~1/4!
, ~B4!

so that

)
k51

n

S2k12~0!515
gc
n

22n15

G~1/4!G~3/4!G~n13/2!

G~1/2!G~n17/4!G~n19/4!

3
M @~2n13!/2,2n17/2,gc#

M ~ 3
2 ,

7
2 ,gc!

. ~B5!

Now, on using the recurrence relation of Kummer’s func-
tions @7#,
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azM~a11,b11,z!5b~b11!@M ~a,b21,z!2M ~a,b,z!#,
~B6!

one has~a5 3
2 andb5 9

2!

M ~ 5
2 ,

11
2 ,gc!5

21

2gc
@M ~ 3

2 ,
7
2 ,gc!2M ~ 3

2 ,
9
2 ,gc!#. ~B7!

The leading term of Eq.~42! is then equal to

1

12
2gc
21

1
16gc

2

735

M ~ 5
2 ,

11
2 ,gc!

M ~ 3
2 ,

7
2 ,gc!

5
1

11
2gc
15

2
8gc
35

M ~ 3
2 ,

9
2 ,gc!

M ~ 3
2 ,

7
2 ,gc!

.

~B8!

By substituting Eqs.~B5! and~B8! into Eq. ~42!, the desired
result given by Eq.~43! is obtained.
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