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Analytic calculation of the aftereffect solution and correlation time
of the induced dipole Kerr effect
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The exact analytic aftereffect functions for the Kerr-effect relaxation of an assembly of symmetric top
molecules having induced dipole moments only are calculated from the rotational diffusion eqSatiol-
chowski equation The solution is obtained in the case where the molecules are acted on by a strong dc field
E., superimposed on which is a weak probe fiEldt) suddenly switched off at time=0. By calculating the
Laplace transforms of these aftereffect functions, two normalized autocorrelation functions are established,
thus allowing one to express the corresponding birefringence ac responses by using linear response theory in
the manner derived by Coffegt al. [Phys. Rev. E49, 1869 (1994)] for the longitudinal susceptibility of
single-domain ferromagnetic particles. The connection between aftereffect and ac responses holds insofar as
only one matrix relaxation function is needed for describing the induced dipole Kerr effect. Then, exact
expressions for the correlation time and the effective relaxation time are derived in terms of Kummer functions
and compared. It is shown that as soon as the dc field paramegsceeds 3, the birefringence decay process
is no longer dominated by the first nonvanishing eigenvalue of the differential matri¢saletion of the
Smoluchowski equatigrunlike dielectric relaxation, but by the second one. Moreover, dispersion plots and
Cole-Cole diagrams as well as phase angles for the second harmonic component are presented for various
values ofg, in order to see how they deviate from the Debye-like spef82063-651X96)12709-4
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I. INTRODUCTION exactly the analytic aftereffect solution for an assembly of

The exact solution for the rise transient of the birefrin- _nonmteractmg symmetric top molecules comprised of pure

ence and the corresponding relaxation times for an asse induced dipole moments only, thus allowing us to calculate
g P g The exact correlation time of the induced dipole Kerr effect.

bly of nonpola}r but amsot.roplca'lly polarizable mOIe(.ZUIeSThis amounts to studying the decay process of the birefrin-
was recently given by Dardin, Blaise, and Coffej1]. This : .
gence following the sudden removal of a small electric field

was accomplished starting from the Smoluchowski equatlonEl(t) applied in a direction parallel to a strong dc bias elec-

In which inertia is completely ignored, which govemns thetric field E;, by which the molecules have been influenced

time behavior of the orientational probability density func- .

. . : . . for a long time. We shall also demonstrate how the complex

tion W(9,¢,t). By expanding this function as a series of Leg- . L o
alternating  birefringence  responseAn(w)=An’(w)

endre polynomials, a set of differential-recurrence relations .",
. i ) . - —iAn"(w) may be calculated from the Laplace transform of
is obtained, restricted only to the even polynomials, which

are of interest for the induced dipole Kerr effect. This set ofthe.aftereffect function using linear response theory, thus _al-
lowing us to show the frequency dependence of the birefrin-

differential-recurrence relations may be solved exactly in ence from the dispersion and absorption spekiriw) and
terms of continued fractions, from which the rise transient ot " . pe P P @
n"(w). In this way, linear response theory has been success-

the birefringence may be calculated by taking the Laplac . . .
transform of the birefringence function, i.e., the ensembidU!ly employed in the exact calculation of the complex di-
average of the second Legendre polynoniRy(cosd))(t). electric or magnetic s_usceptlbllmés,s_] for_ac fields applled_
Having removed the singularity &=0 (zero-frequency parallg! and perpendlcular to a dc bias flgld. These physlcal
limit), we also expressed the relaxation time defined as thguantities require a knowledge of the first autocorrelation
area delimited by the curve of the rise transient and the timéunctionC,(t) appealing to the first Legendre polynomial. In
axis as a sum of products of Kummer functions and its firsour approach to the decay process of Kerr effect relaxation, a
derivatives[1]. similar method may be applied by using the second autocor-
In this paper, we shall show how it is possible to obtainrelation functionC,(t), namely,

. {[Pa(cON OPa(e0%) ), o~ ([Palc0 OV o
A0 R (o A0 e, 0 ([PACOD TGy
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where the angular brackets represent ensemble averages of . 9 o 0
the second Legendre polynomiglh(cos) evaluated in the Ap(u)=D —~ | (1—-u%) -
absence o, (t).

It should be noted that the connection existing betweeng ., operator not perturbed by the electric fiel,is the

the transient response and the ac response holds for pugg,ry diffusion constanta, is the Laplacian operator with
induced dipole moments only, unlike pure field-off moments,respect to the variable
since these latter correspond, strictly speaking, to a nonlinear '
Kerr effect response. This aspect will be developed in Sec. .
II. Then we shall verify that the exact solutions which we Ag(u)=D
obtained are in excellent agreement with those obtained by
expressing the set of differential recurrence relations in ma- L .
trix form X(t)=MX(t), and calculating the eigenvalues and IS an operator pertL_ered by th_e electric f|e_|d, @@) is the
. . ) - .. parameter measuring the ratio of the orientational energy
corresponding amplitudes of the first modes of the birefrin-. . . I
. . arising from the electrical polarizabilities to the thermal en-
gence decay. Next we present results yielded by the effective
. . C o argy, namely,
eigenvalue method and compare the effective relaxation timé

with the correlation time for various values of the dc electric

=DA, (5b)

(50

(3u’—1)—u(1-u? % ;

field expressed in terms of the dimensionless parantgter g(t)= A_a E2(t). (5d)
defined as 2kT
v—a, _, Aa We _shaII solve_Eq(_S) by using a perturbatio_n met_hod as
9= T EC:TI’ Ec, (2) previously detailed in Refd4, 5]. To accomplish this, we

rewrite this equation as

where ¢ and «; represent the principal electric polarizabil- Jfut) - .
ities parallel and perpendicular to the symmetry axis of the ! :[Ao(u)+e2E2(t)Ag(u)]f(u,t), (6)
molecule, respectively. at

wheree?=Aa/kT may be regarded as a small perturbation
parameter.

In the absence of electric fielunperturbed staje the
corresponding solution of Eq6), called the conditional-
probability-density function by Morit§5], satisfies the fol-

We assume that molecules are nonelectrically interactingowing partial differential equation:
which means that, in particular, the dipole-dipole coupling
effect is not taken into account, so that we may consider the dh(u,u’,t)
motion of only one molecule, the others following on the at
average the same behavior. The orientational potential en- .
ergy arising from the anisotropy of the polarizability of the SinceAy(u) is a Laplacian operatoh(u,u’,t) may be ex-
molecule acted on by the electric fieltlis panded in a series of Legendre polynomials

Il. PERTURBATION SOLUTION
OF THE SMOLUCHOWSKI EQUATION
IN THE PRESENCE OF INDUCED
DIPOLE MOMENTS

= Ao(U)h(u,u’,t). (63

VZ—%E-a-E, 3 , ,
h(u,u’,)=2 exd —n(n+1)Dt]P(u)Py(u’), (6b)
where a is the second-rank electric polarizability tensor. "
If the geometric axes of the molecule coincide with those

of the polarizability tensor, we have with the following initial condition(closure relatiohn

V(8,t)=—3AaE%co$d— 3, E? (4

h(u,u’,00=2 Py(u)Pp(u)=8(u-u’), (60
where ¥ is the angle the symmetry axis of the molecule n
makes with the field direction. Since the potential energy
depends on the polar angt® only, we can ignore the azi- W
muthal dependence on the anglén the orientational prob-
ability density function so that its time evolution written in

here(u—u’) is the Dirac delta function.
The general solution fof(u,t) is then

terms of operators i§Smoluchowski equatior 4] f(u’t):f h(u,u’,t)f(u,0)du’
Jf(u,t) . -
o ~[AdW+2gAWIFLY, (5 +e2f f;h(u,u,,t_t,)
where X Ag(u )EXt)f(u’ t")du'dt’. 7

27 . . .
f(u,t)= ) W(9,0,t)de, U=cosY, (58) \l,\lvgv]\c/i,nz%ﬁépandmg(u,t) in a series of even powers ef
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S In Eq. (10), we find a time- and frequency-independent part
f(u,t)="f(u,0)+ E ezlfgvzj(u,t). and two distinct time-dependent contributions varying at the
=1 circular frequency of the alternating field and its second har-
monic. We also note that the leading term of this equation
Sroportional toE 2 and E2 corresponds to a steady compo-
nent. Regarding the harmonic components, the termswin 2
arise from the ac field only, while the termsdnresult from
the conjugate action of both ac and dc biasing fiétamlin-
where the subscript and 2 stand for the dependence on theo &l effect. Qn using the def|n|t|on of the Fourier-Laplace
. . ... ‘transforms in the time domain, the Kerr effect response may
induced dipole moment and the order of the electric field )
. therefore be expressed as follows:
respectively, and

If we restrict ourselves to the linear response up to the se
ond order in the electric field strength, we haye-1)

f(u,t)="1(u,0)+e?fy(u,t), (8)

t fo(t)=lime?f, ,(u,t)=An(0)
fgyz(u,t)=J' hfy(t—t")E3(t")dt’. (8a 2L 9?
0
2
In Eq. (8a), h represents a row matrix, the elements of which + 21 [An{(w)cogjwt)+Ani(w)sin(jwt)],
=

are the Legendre polynomials of even degree,
11
h=[Pg,P2,P4,....P3,...], (8b)
where An(0) is the steady component, antin(w) and
An;’(w) are the real and imaginary parts of the complex
electric birefringence functions such that

while fy is a column matrix with thgth term given by

fg21>=exq—2j(2j+1)ot]f Poi(W)A(U)f(u,0)du.
(8¢ An(0)=e?h(EZ+ 3E5)F4(0), (123

Let us consider an electric stimulus of the form L NPT T S
E(t)=E.+E, cos(wt), that is a strong dc field, superim- Any(w)=Any(w) —iAny(w)=z8"NEsF(2iw),

posed on which is a weak ac field applied in the same direc- (12b

tion. We have

Anl(w)=An1(w)—iAn’l’(w)=2e2hE0Ech(iw),

t 12¢

fg,z(u,t)=h(E§+%E%)Jofg(t—t')dt' (129

. andFy(s) is the one-sided Fourier transform matrixfgft),

+%hESJ fo(t—t")cog 2wt )dt’

0

Fg(s)=J'wfg(t)exp(—st)dt, (12d)
t 0
+2hEOECfOfg(t—t’)Cos(wt’)dt’, 9

the symbolic variables being equal to Pw oriw.
from which we see that the induced dipole Kerr effect result-
ing from such an electric field consists of three components
characterized by the same matrix relaxation functjgt). In
the stationary regime corresponding to the physical situation
where all the transients disappear, E9). becomes

Ill. CALCULATION OF THE BIREFRINGENCE
ac RESPONSE USING THE LAPLACE TRANSFORM
OF THE CORRESPONDING
AFTEREFFECT FUNCTIONS

lim f..,(u,t)=h(E2+ 1E2 f“’f tdt In order to proceeq, we consider the rqtational Brownian
o g2l U =N(EcH2E) 0 oV motion of a symmetric top molecule subjected to the total
external electric field&E.+ E4(t), whereE,(t) is a small con-

P B N e stant field. For the calculation of the birefringence decay, we
+ihE0” fo fo(t')cod20t)dt" |COd2wl) 555 me thaE,(t) is suddenly switched off at time=0. So,
returning to Eq.(5), and seeking its solution as a series of
* L d I ials in the f
N f f(t)sin(2et))dt! sin(zwt)] egendre polynomials in the form
0
+2hEOEc{{f fg(t’)COS(wt’)dt' COE(wt) f(u,t):nZ:O an(t)Pn(U)y (13)
0

+ fwfg(t’)sin(wt’)dt

0

sin(wt)]. (10) )[/iv:ngbtain the following set of differential-recurrence rela-
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D : 29,
K2k+ 1) fa(t) + 1—m fo(t)
29.(2k—1)
= ak—1y(ak+1) 22
29.(2k+2)

T (4k+1)(4k+3) foia(t), k=1.2,...,
(149

which is identical to Eq(4) of Ref.[1] or Eq.(7) of Ref.[6],
but where

far(t) = (P2 (u)) (1) = (Pa(u))(t) g, =0,
(14b
fo(t)=0,

instead off,, (t)=(P,(u))(t), and 7 is the usual Debye

relaxation time related to the birefringence relaxation time

by the relation

1
TD=3T=z=.

2D (149

2985
where
~ Fals)
Rok(s)= Foa(S)’ (159
Fou(s)= f:ka(t)exp(—st)dt. (15b)

The initial conditions are given by the functiorfs, (0),
which may be determined as follows:

+1
f—l eXF{(gc+gl+gcl)U2] PZK(U)dU

fax(0)= 1
| ext(get gyt geuidu
—(Pak(UW)) g, =0 (16)

where

Aaz Aaz A_a

gc:m Ec, glzm— El, Oa= KT E.Eq,

This set constitutes a three-term recurrence relation, so that

we can find its solution in the form of scalar continued frac-

tions as previously derivedL,6].

01,9c1<9c-

Insofar asy; andg,, are considered small perturbations, we

Since we are interested in the decay process of the birgzan use the linear approximation by, (0), which yields

fringence, only a knowledge df,(t) is needed; that is,

+1
(0= | TP ~(Potu)) g -olf(udu

Taking the Laplace transform of E¢l4a), we have see Eq.
(28) of Ref.[6]]

STD ch
Rok(S)| jzkr 1) 717 @k=1)(ak+3)
29.(2k+2) R ) f21(0)
(@k+ 1)(ak+3) 229 | = ki D) By o(9)
29.(2k—1)
e 09

(2k+1)(2k+2)  gk*t

fa(0)=(g1+ gcl)[<u2P2k>|E1:O_ <u2>|E1:O<P2k>|E1:0]
=5(0)+15(0), (17)

where the superscript®) and (1) stand for the terms pro-
portional tog, andg.;, respectively. We have retained these
notations because, as we shall presently ségé?)(O) will
allow us to calculate the second harmonic component of the
birefringence, and2k(1)(0) the first one. On using the recur-
sion relation of the Legendre polynomials

(4k+ 1)U sz: (2k+ 1)P2k+l+ 2kP2k,1 y

and evaluating Pa)e -0 and(uz)E1:0 as detailed in Ref.
[1], Eq.(17) is

I'(k+3)

fo(0)=(91+9c1)

.\ 2k(2k—1) gt T'(k—3)
(4k=1)(4k+1) 2Mm(%,2,90) T(2k—1)

2k+1)?

(4k+1)(4k+3) 2m(3,2,9,) T'(2k+1)

M(k—3z,2k—3,9c)

M(k+32,2k+Z,9.)

k T'(k+3)

9c

+(gl+gc1)

4K?

(4k+1)(4k+3)

(4k—1)(4k+1)

M gvgi C
(3.5.9 )] .

3M(3.%,00) ]
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where we have used tieéand Kummer(or confluent hyper-
geometri¢ functions defined af7]

I'(z+1)=zI'(2),

Ly @7
M(a,b,z)—lJr]_Z,l ), 1"

I'(a+))
(8)j= I' @)

T'(b+j)
T(b)

(b);= (Pochhammer symbols
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The continued fractiors,(s) depends orS,(s), which in
turn depends org;(s), and so on. After some algeb(aee
details in Appendix A, we finally arrive at the following
result:

Fa(s) T
fo(0) 20. 89,
2 +1—2—(‘]’1+3—%s4(s)
3 < - ani2(0) n+5/4
X|1+g 2 (-1 f,(0) (n+32(n+1/2)
C(n+1)I(1/2)
I‘(n+ 1/2) kE[l S2k+2(5) . (26)

The next step consists in calculating the Laplace transform of

the birefringence aftereffect function, thatfhs(s). In order

This equation is the exact formulation of the Laplace trans-

to accomplish this, we adopt the method proposed by Cressggrm of the decay functioffi,(t). It has the same form as the

et al. [8] and Coffey[9], in which Ry (s) is split into two
parts such that

Rok(S) = Spi(S) + dak(S)/ Fox—o(S), (19

where S,,(s) is the solution of the homogeneous equation

(149 [f,(0)=0] [see Eq(7) of Ref.[1] or Eq.(30) of Ref.
[6]].

Hence Eq(15) may be reexpressed in termsmi(s) and
S,i(s) functions

S7p 29.
K(2k+1) 1 (ak=1)(ak+3) |92
29.(2k+2)
(Ak+1)(4k+3) [ A2+ 2(S) + 02k(S) Soi 4 2(S) ]
7pf2k(0)
“kakr) 20
from which
Q2k(S) = ay g for(0) = bokQok+2(S) [S(s),  (21)
where
1631 | 2K(2k+1)(2k+2)
A Sake=1)" P2 akr 1) ak+3) 22
From Egs.(15b and(19), we have
Fok(S) = Fok—2(S) Spk(s) = dak(s), (23

so that

™D
g—c for(0) — bsz2k+2} ] Sx(S).
(24)

Fo(s)= [ Fak—2(S) +ag

For k=1, one obtaingFy(s) =0]

Fa(s)=a S,(s). (25

™D
— f,(0)—b,0q4(s)
Jdc

dielectric result of Coffeyet al.[6] (with odd function$ ap-
plied to single-domain ferromagnetic particles. At this stage,
one can note the equivalence of the present prolileren
functiong with that solved in our previous papEgt] or that

in Ref. [6]. However, the initial conditions are completely
different hergsee Eqs(16), (17), and(18)], since they can
be split into two parts. On the other hand, and correlatively,
the aftereffect response resulting from the application of two
fields brings into play twd=, functions. Indeed, on setting
s=2iw ors=iw, Eq.(26) allows one to define the one-sided
Fourier transforms of the normalized birefringence autocor-
relation functions as

F2(2iw)
CP(2iw)= %T(o()u’ 273
FV(iw)
P (i w)= f'le)—(g;. 27b)

We may therefore calculate the complex birefringence func-
tions which, using linear response theory are as follows.
For the second harmonic componéi),

Any(w) _ f f2(t)
_1_

FP(2iw)
=1-2i =1-2iwC?(2i w).
(29)
On recalling that
LI o)1= = f(0) + SF(S), (29

where £ denotes “the Laplace transform of,” E§28) be-
comes

Any(w)
Any(0)

= — Lo [f2(0)TZ(0)=Xp(0) =Y 5( ),
(30)



54 ANALYTIC CALCULATION OF THE AFTEREFFECT . .. 2987

which shows that in the linear approximation the rate of g 80g°
decay of the induced dipole Kerr effect is the negative of its ff)(O): 1 ¢ M(%,%.9.)
rate of growth(birefringence arising from a continuously ap- ( 297 297
plied ac field.
For the first harmonic componefb), 492 (39 M(%,3,90)
J’_ e —
315(77 3M(21219c))

M:l—iwf f(l)()exp( i wt)dt
0

An;(0) (0) 89
o XM(3. 2,00+ 37 M(3.5.00) |, (34a
=1-iwCM (i)
=— L [ ()1F59(0) g 1692
. 2(0)= 1 M8 LU
=Xy(w)—iY (o). (31) f37(0)= YEERR 3675M(2:7.90)
1219C
In Egs.(30) and(31), Xj(w) andY;(w) (j=1,2) represent the 5 11 Mg
real and imaginary parts of the normalized birefringence 0c [ 21 229 M (2
functions. Their evolution as a function of the circular fre- 15121 3Mm(%,2,90 22
guency lead to the well-known dispersion spectra. It is also
interesting to plot the variations of; as a function ofX;,
which yield Cole-Cole-like diagrams. The dispersive nature M(3.3.9c) |- (34b
of the medium is again manifested by the phase amyle
existing between the applied field and the Kerr effect re- .
sponse, namely, On setting
Yi(w) a=1-29./77, b=3wr/5 c¢c=1-2g.,/21, d=2wr7
. — —1 J— c 1 ’ C ’ ’
0(w)=tan Xi(@)" (32 (340
. : ” 16 12 12(0)
By inspection of Eq.(26), we note that all these quantities A= 7—3590, H= mm Jc
2

are strongly dependent on the parameterWe shall exam-

ine this aspect in Sec. IV.
Eq. (33) becomes

IV. NUMERICAL ANALYSIS OF THE NORMALIZED , ,
AMPLITUDES FOR THE BIREFRINGENCE FUNCTIONS : _ id[(a—H)+ib]
Xz(w)—le(a))—l— . . y (35)
(a+ib)(c+id)+A

We have just established exact formulas for the induced
dipole Kerr effect arising from the coupling between a small
ac field, and a strong dc biasing field. Because the alternatm\ﬂ
field is very small, we have been able to define a linear
relaxation behavior with respect to this field. With a view (@)= (act+A)(ac—bd+A)+(bc+dH)(ad+bc)
toward obtaining expressions for the harmonic components “*? @ (ac—bd+A)?+ (ad+bc)? '
of the birefringence which may be easy to apply to experi- (363
ments, we shall now seek to reduce E@R) and(31) to the
first order approximation. This means that we shall take into
account only the first term of the sum in EQ6), and sub- gy
sequently we shall negle&, ., »(s) for k greater than 1: that

is, Sg(S), Ss(9), etc.

Hence, for the second harmonic components we have

hich, separating the real and imaginary parts, yields

Xo(w)—iY,(w)

1 2iwT
- 29. _ 89c 29,21 e
+ —_—t = ° < > :
Zlort =517 35 3 . R . . . )
5 lw7T+1-29./77 T 5 6 7 3 9 10
log [ (rads™)]
18 £2)(0) 29./21
X 25T 3 , (33 FIG. 1. Dispersion and absorption plots of the second harmonic
f27(0) —joT+1-29J77 component of the birefringenc® and | stand for the real and

imaginary parts of the normalized complex birefringence. The sub-

scripts 1-4 denote varioug, values. 19.=3; 2,9.=6: 3,9.=7
where[from Eq. (18)] and 4,9.=9
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logm[w (rad s"Y] 3L

FIG. 4. Same as Fig. 3, fg.=18.

FIG. 2. Same as Fig. 1, f@g.=18.

greater than 3, these diagrams are larger and larger, de-
(actA)(ad+bc)—(bctdH)(ac—bd+A) formed on the right by taking the shape of conchoids of

(ac—bd+A)*+(ad+bc)* ' circles. All these curves start frond,=1 andY,=0 when
(36D =0, and tend tangentially to th®Y, axis asw—e. g,
values greater than 7 are interesting from an experimental
point of view. In this case, indeed, one can so¥gw)=0,

Yo (w)=

In the particular case wheg.=0, we have

1 and find a solution which differs from zero. One has
x2(w)=1+4w272=1+(w/3D)2' (3769 25(aC+A)(H—a) 1/2
0T=|5 ———| (39
V()= 207 (w/3D) 37b) 3 10H+3c
297 1440?72 1+ (0/3D)? which allows one to extract the birefringence relaxation time
_ ) i 7 having determined by experiment the circular frequency
in agreement with previous resufts0]. for which Y,=0. We have also plotted variations of the

The dispersion spectra representedXyw) and Y;(®)  phase angld, as a function of, as shown in Figs. 5 and 6,
are illustrated in Fig. 1 fog.=3, 6, 7, and 9, and in Fig. 2 ¢5r various g. values. The general tendency of all these
for g.=18. We note a Debye-like behavior as fargss less  ¢ryes is that the asymptotic limit is alway$2. As long as
than 6. Beyond this value, the real paxigw) are character- g. does not exceed about 7, one remarks that the slope of
ized by an overshodtX,(w)>1], while the maxima of the  {heses shaped curves becomes steeper and steeper for in-
imaginary partsYg(w) are shifted to the right of the fre- creasingg, values. Then, fog,=9, for example y(w) starts
quency scale for increasirg, values. Moreover, fogc>7,  fom zero, and takes negative values before passing again
Y (@) _takes negative values at low fr_equenues. A S'm”arthrough zero and attaining/2. The high value ofy,=18
trend is observed fog, =18, accompanied by negative val- |eads to similar conclusions, with, however, a small differ-
ues Qfxz(w) in the hlgh—fr_equency region which is charac- gpce in the midfrequency domain whefigw) slightly ex-
teristic of resonant behavior. ceedsn/2 before reaching this limiting value.

Cole-Cole plots are shown in Figs. 3 and 4. Upte-=3, The same considerations may be used to find the first
one may consider that quasisemicircles are obtained, the p&farmonic components from the corresponding aftereffect
fect semicircle corresponding tg.=0. As g, becomes fnction appearing in Eq31). By restricting this equation to

the first order approximation, one obtains

log, [0 (rads bl |

FIG. 3. Cole-Cole plots of the second harmonic component of FIG. 5. Plots of the phase angles vs |gig/27) for the second
the birefringence. The numbers above the plots are for vaggus harmonic component of the birefringence. The numbers indicated
values. by arrows are for varioug. values.
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, T T 29, 8
- w7 1- e 20 540)
iorr 1 29 89 29./21
i - -t = -
10’ ¢ ol P2 (=1 f,(0) (n+3/2)(n+1/2)
18 f{V(0) 29./21 I'(
n+1)(1/2)
~ 25f(0) 3 ’ 39 TTn+12) H Sak+2(0) |, (42)
ior+1—29./77 k=
10
: . h
wheref Y(0) andf $Y(0) are given by Eqs(34a and(34b), in where
which g, is replaced byg,;.
We have verified that the dispersion plo¥s(w) and 29, M(3,%.90)
Y1(w) behave in the same manner as those described by the S4(0)= 21 M(2.2.9.)
21219cC

second harmonic. We simply observe a frequency shift to the

right.

V. EXACT EXPRESSIONS FOR THE CORRELATION
AND EFFECTIVE RELAXATION TIMES

By definition, the correlation time is the area under the

curve of the normalized autocorrelation functiGg(t): that
is,

T= lim fwc (t)ex — stdt=limCy(s)= Cy(0) = 22
s—0J0 ? s—0 ? ? fz(O) .
(40)

Since this time corresponds to the limit of zero frequency in

the Laplace transform dE,(t), we obviously have

CY(0)=C4"(0)=C5(0), (413
as appears in Eq26), where
for2(0) 5, 5(0) b

90 1570
so that there is only one expression fiar

From Eq.(26), in which we ses=0, one obtaingreduced
relaxation time

%
8,
(deg)
45
. . . . . . , , 0
4 N 7 F 9 10 11
]

log , [ (rad s°9)]

FIG. 6. Same as Fig. 5, fag.=18.

On evaluating the product in E¢42) (see Appendix B T’
becomes equal to

M(Z!Z!gc)
Oc

T =
1+_)M(2!219C)_ M(Z!Z!gc)

o F2n+2(0)
f2(0)

X 1+9n§1(—1)

T(1/4T(3HT (n+1)
(N+3/2T(n+5/4T(n+7/4)

gl M[(2n+3)/2,2n+7/2.9.]
2n+5 .
25 M(2,%,9c)

(43

This is an exact expression for the correlation time equal to 1
for g.=0. Its evolution as a function dj, is illustrated in
Fig. 7. In order to ensure correct convergence of the sum in
Eqg. (43), we have verified that 24 iteration®=24) were
sufficient in the range€g.<50. The Kerr effect correlation
time passes through a maximum situated abgut1.4
(which is interesting experimentajlypefore decaying mono-
tonically to zero for increasing. values. This behavior re-
sembles that observed in the rise transient profEkwith,

05 ¢

Reduced relaxation times
)

20 g,

FIG. 7. Comparison of the exact correlation tifié (curve a)
with the effective relaxation tim& (curveb) as a function of the
electrical anisotropy parametgg . (T' and T/ are reduced times
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however, smaller numerical values falling off more and more . 1

in proportion tog, asg, increases. fa(t)=— g~ Mfa(t), k=12,..., (44)
We shall now see how equivalent results may be obtained

by using matrix methods. This is accomplished by arrangingvheref,, andf,, are column matrices withth terms given

the set of differential recurrence relatiofsg. (14a] in the by f,;(t) and df,;(t)/dt, respectively, andM is annxn

form matrix defined by

39c 489,
- 0 0 0
dige
~ 40gc _29c 809, 0 0
21 77 33
M= 0 _ 4209, 1_2gc 2249, 0 .. (45)
143 165 65
3369, 29c
0 0 - — -
85 72( ! 285
|
The formal solution of Eq(44) is The amplitudes and eigenvalues of the first four modes are
presented in Table | for various values of the paramgter
for(t) =fo (0)exp(M't), (46) up tog.=20. Since the eigenvalues are evaluated in the form
\,;/67, the reduced relaxation timiE is effectively given by
where
T Apint
, 1 T=—=6y —0. (50)
M = - a_ M y T j A2j
and f,,(0) is the column vector of initial conditionfEq. It should be noted that all the amplitudes are positive, unlike
(19)]. what was observed for the rise transient response. Moreover,
Hence the relaxation modes of the decay Kerr functiors far asg. remains small enougtabout 4, say one can
may be written as follows: consider that the reciprocal of the lowest eigenvaly@ro-

vides a rough description of the correlation time. As soon as
@ d. becomes greater than 4, it is no longer the first mode
f2()=g1>, Agjexp(—Nyit) , (478 which dominates the response, but the second one. This ex-
: plains the differences observed between our dispersion plots
and Cole-Cole diagrams when compared to the Debye spec-
f(21>(t):gclz Agjexp(—Ayt), (47p tra [Egs. (37)]. This means that the decay of the induced
i dipole Kerr effect characterized by the functity{t) cannot,
in general, be represented by a single exponential, save for
whereA,; denotes the amplitudes of the first components okmall or very high values of the parametgr. By using a
the successive eigenvectors associated with the eigenvalugex30 matrix, excellent agreement was obtained in com-
Agj- parison with the continued fraction methods fora@livalues.
From Egs.(40) and (47), we have It is now interesting to consider the solution rendered by
the effective eigenvalue method. In this approach, it is as-
_ sumed that the pure induced dipole mechanism may be ap-
F(s)= 91; Agj(sFAz) Y, (483 proximated by a single exponential term characterized by an
effective relaxation timé o, such that

F<21>(s>=gd; Ai(s+Ng) ", (480) f52(t)=g.exp — Negt), (513

so that fSU(t) = gerexpl — Aegt), (51b)

S ANt T -1 Ve o
_ Zim2jhej (49) Wherehes=Teq " is the effective eigenvalue.

SiAy From Eqgs.(47),
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TABLE I. Eigenvalues in the form;/67 of the first four modes of the decay of the birefringence as a value of the paragpetad
corresponding amplitudes,;, j=1,2,3,... .T" is the reduced correlation time given by E§).

9c Ao Ag e g Az Ay As Ag T
0.2 5.89 19.90 41.90 71.90 0.138 2.93E-09 1.49E-09 3.21E-14 1.017 98
0.4 5.80 19.81 41.82 71.82 0.142 0.000 121 2.45E-08 2.11E-12 1.033 64
0.6 5.72 19.74 41.74 71.74 0.146 0.000 278 1.27E-07 2.46E-11 1.046 78
0.8 5.66 19.67 41.68 71.68 0.149 0.000 505 4.11E-07 1.41E-10 1.057 17
1 5.61 19.62 41.62 71.62 0.151 0.000 803 1.02E-06 5.47E-10 1.064 65
1.2 5.58 19.57 41.58 71.58 0.152 0.001 17 2.14E-06 1.65E-09 1.069 10
1.4 5.56 19.54 41.54 71.54 0.152 0.001 61 4.00E-06 4.21E-09 1.070 42
1.6 5.60 19.52 41.52 71.52 0.152 0.002 11 6.85E-06 9.42E-09 1.068 57
1.8 5.57 19.51 41.51 71.51 0.150 0.002 68 1.10E-05 1.91E-08 1.063 56
2 5.60 19.51 41.50 71.50 0.148 0.003 30 1.67E-05 3.58E-08 1.055 46
3 5.93 19.69 41.65 71.64 0.124 0.006 95 7.86E-05 3.78E-07 0.973 36
4 6.61 20.15 42.07 72.04 0.0925 0.0107 0.000 212 1.81E-06 0.842 85
5 7.61 20.91 42.75 72.70 0.0624 0.0135 0.000 415 5.50E-06 0.695 85
6 8.90 21.96 43.71 73.62 0.0393 0.0151 0.000 654 1.24E-05 0.557 36
7 10.45 23.34 44.95 74.81 0.0235 0.0155 0.000 890 2.29E-05 0.440 79
8 12.20 25.05 46.47 76.27 0.0135 0.0151 0.001 08 3.64E-05 0.349 89
9 14.11 27.12 48.29 78.01 0.007 40 0.0140 0.001 21 5.17E-05 0.282 39
10 16.13 29.56 50.42 80.03 0.003 89 0.0126 0.001 27 6.70E-05 0.233 46
11 18.20 32.38 52.87 82.34 0.001 95 0.0111 0.001 25 8.09E-05 0.198 04
12 20.28 35.56 55.66 84.94 0.000 935 0.009 63 0.001 16 9.20E-05 0.172 00
13 22.37 39.07 58.80 87.85 0.000 431 0.008 36 0.001 02 9.95E-05 0.152 34
14 24.45 42.86 62.33 91.08 0.000 193 0.007 30 0.000 848 0.000 103 0.137 02
15 26.51 46.86 66.25 94.62 8.38E-05 0.006 43 0.000 667 0.000 103 0.124 75
16 28.57 51.00 70.60 98.51 3.58E-05 0.005 72 0.000 494 9.99E-05 0.114 65
17 30.61 55.22 75.37 102.74 1.52E-05 0.005 13 0.000 345 9.41E-05 0.106 16
18 32.64 59.46 80.56 107.35 6.24E-06 0.004 64 0.000 227 8.65E-05 0.098 91
19 34.67 63.71 86.12 112.35 2.57E-06 0.004 20 0.000 142 7.79E-05 0.092 63
20 36.70 67.92 92.02 117.77 1.05E-06 0.003 82 8.49E-05 6.88E-05 0.087 12
i‘z(O) 3iAziz The v_ariation_s off ;4 as a function ofj, are plotted in Fig. 7.
Neft= "7 0" A, (520 we find again a maximum at abogi,=1. The curve is
2 172 slightly situated under that of the correlation time up to
and the reduced effective relaxation time is gc:15, and beyond this value both curves have practica”y

the same behavigisimilar asymptotic limi}.
! Ef =6 ZiAzj
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simple analytic formula foiT . Settingk=1 in Eq. (149,

and noting thaf y(t) =0, one has APPENDIX A

48y, We seek the exact expression for the Laplace transform of
fo()+ 32 fa()|, (54 the aftereffect birefringence functioR(s). In order to pro-
ceed, we recall Eq25),

. 1 29
fat)=— {6(1—2—1(:

so that
,
| 1 20, 480, Fa(s) =2y > 12(0) ~baa(s) Sy(9),
fz(t)Z—a[G(l—Z)fz(t)‘*‘ﬁ f4(t)} (55 ¢
which, using Eq(22) for k=2,
and
_ L . Qu(5)=ay) o 1a(0) ~buls(3)[Su(s),  (AD

2. 89c f4(0)
-4+ = .
21 35 f4(0) yields

1
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™ b which is Eg.(26), after having noted from Eqg20) and
Fa(s)=a, % f2(0)Sy(s) —axb,| as — f4(0) (223 that
Cc Cc
—~24D406(5) | S2(5)Sy(s) a, 22T
9c 29
r
= 2 [a,f5(0)Sy(5) — ash244(0)S,(5)S4(9)] 2 1
Oc _ ¢
S(S) =75 29, 89
+ab7840,496(5)Sy(5) Sy(s). (A2) ST+1— 2—1C + 3—; Su(s )
The complementary functiogg(s) may in turn be expressed
as
APPENDIX B
™ . . . .
S)=aud — f-(0)— ba0a(S s), A3 The exact expression for the correlation time given by Eq.
%s(5)=2¢ 9c 6(0) ~ Dedla(s) | Sols) (A3) (42) may be reduced to Edq43) if one explicitly expresses
the product of continued fractio 0). One has
so that P B+ 2(0)
T n
Fa(s)= g—D [a2f2(0)Sy(s) —azh,a,f4(0)Sy(s)Sa(s) kHl Sak+2(0) = S4(0)Se(0) Sg(0)...Szn+2(0)
Cc =
+a5b284b4f6(0)Sy(5)Sy(5)S(s) — -+ 1. (Ad) _(2g 2 )(Zg 7
- cC7vwao c c
In this form, one can see that E@\4) is an alternating series 79 11x13 1ox17
which can be written as a sum of products of continued frac- 2n+1
tions, |29 (an+3)(an+5)
- M[(2n+3)/2,2n+7/2,9.]
Fa(s)=a; — 52(8){ f2(0)+ 2 (—1)" 5. 4(0) X 9el (B1)
n=0 M ( 212 190)
n
11 a2k+4b2k+282k+4(s)} (A5) By using the definition and the propertieslofunctions, the
k=0 following products may therefore be calculated:
The product of the coefficienta,, 4b,, o Can be easily
I'(n+3/2
calculated. One has X BXTX X (2n—1)(2n+ 1) = 21 (1“(1/2) )’
N (2k+2)(4k+9) (B2

n
H Ao+ Dot 2= H
k=0 K
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o (2k+5)(4k+5)

7X11X 15X --- X (4n—1)(4n+3)

3 n+9/4
T 5 (n+1/2)(n+3/2)(n+5/2) . T(n+3/4)
=3(4n+3)4 —F(3/4) , (B3)
C(n+2)T(1/2)
T(n+1/2) (A6)
9X 13X 17X --- X (4n+1)(4n+5)
Hence Eq(A5) becomes I'(n+1/4)
. = %(4n+1)(4n+5)4” W, (B4)
FoS) oo gl1eS) (g fnal© (1/4)
f2(0) "% ge =0 f2(0)
so that
D (2k+2)(4k+9)
H (2k+5)(4k+5) Szk“‘(s)} ! g7 L(UHT(3IHT(n+3/2)
[1 Su:2(0)=15
- kop k2 22775 T(1/2)T(n+ 7/4)T (n+ 9/4)
— (S) 2 ( 1)n 2n+2( ) / /
= f,(0) ><M[(2n+3) 220+ 7/2.9:] @5
n+54  T(n+1)I(1/2) i M(Z.2,9c)
T U2 (n+32) T+l ady 229

Now, on using the recurrence relation of Kummer’s func-
(A7)  tions[7],
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azM(a+1b+12)=b(b+1)[M(a,b—12)—M(a,b,2)], 1 1
B6 = .

(B9 20, 16GEM(EE.00 | 20. 89 M(3.E00

_3 _9 -= S8c TZc T 22Ee

one haga=7 andb=y) 21" 735 M(3.1.90) 15 35 M(3,3,00)
21 (B8)

M(gi%vgc)za[M(%v%vgc)_M(%!%vgc)]' (87)
¢ By substituting Eqs(B5) and(B8) into Eq.(42), the desired
The leading term of Eq42) is then equal to result given by Eq(43) is obtained.
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